
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Lightweight Self-Knowledge Distillation with
Multi-source Information Fusion

Xucong Wang İD , Pengchao Han, Lei Guo

Abstract—Knowledge Distillation (KD) is a powerful technique
for transferring knowledge between neural network models,
where a pre-trained teacher model is used to facilitate the
training of the target student model. However, the availability
of a suitable teacher model is not always guaranteed. To address
this challenge, Self-Knowledge Distillation (SKD) attempts to
construct a teacher model from itself. Existing SKD methods
add Auxiliary Classifiers (AC) to intermediate layers of the
model or use the history models and models with different
input data within the same class. However, these methods are
computationally expensive and only capture time-wise and class-
wise features of data. In this paper, we propose a lightweight SKD
framework that utilizes multi-source information to construct a
more informative teacher. Specifically, we introduce a Distillation
with Reverse Guidance (DRG) method that considers different
levels of information extracted by the model, including edge,
shape, and detail of the input data, to construct a more informa-
tive teacher. Additionally, we design a Distillation with Shape-wise
Regularization (DSR) method that ensures a consistent shape of
ranked model output for all data. We validate the performance
of the proposed DRG, DSR, and their combination through
comprehensive experiments on various datasets and models. Our
results demonstrate the superiority of the proposed methods over
baselines (up to 2.87%) and state-of-the-art SKD methods (up to
1.15%), while being computationally efficient and robust.

Index Terms—Self-knowledge distillation, information fusion,
label-smoothing, regularization.

I. INTRODUCTION

KNOWLEDGE distillation (KD) [1] is powerful for trans-
ferring knowledge between neural network models, en-

abling model compression, performance improvement, and in-
terpretation. In the vanilla KD framework, a pre-trained larger
model acts as the teacher to facilitate training of a smaller
model, i.e., the student, for efficient feature characterization
of the training dataset. However, the availability of a suitable
teacher model is not always guaranteed. KD can be utilized for
characterizing the features of the training dataset to improve
the performance of a single model, known as self-knowledge
distillation (SKD) [2]–[5]. In SKD, a neural network model
acts as its own teacher by utilizing the knowledge extracted
from itself to guide its own model training, resulting in
improved model accuracy.

Xucong Wang is with the School of Computer and Communication En-
gineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000,
China (e-mail:XucongWang111@outlook.com)

Pengchao Han (Corresponding author) is with the School of Science and
Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen
518172, China (e-mail: hanpengchao@cuhk.edu.cn)

Lei Guo is with the School of Communication and Information Engineering,
Chongqing University of Posts and Telecommunications, Chongqing 400065,
China (e-mail: guolei@cqupt.edu.cn).

 Model

Block Block

Model

(a) Multi-exit
SKD

(c) Intra-class
SKD

(b) Time-Wise
SKD (d) DRG (ours) (e) DSR (ours)

Model

lo
ss

loss

lo
ss

lo
ss

lo
ss

loss loss

Block

lossloss

loss

lo
ss

Block

Block

Classifier

Model

lossloss

Model

Block

Classifier

Original model

loss Original loss

loss Additional SKD loss

Auxiliary classifier

Forward
Back-propagation

Mini-batch at iteration

Two mini-batches from
the same class

Two random mini-
batches

Classifier

Block

Fig. 1: Overview of existing SKD methods, i.e., multi-exit
SKD, TW-SKD, and IC-SKD, and our methods, i.e., DRG
and DSR.

To support SKD, existing works have explored various
methods for extracting useful knowledge from a model itself,
as shown in Fig. 1. In general, a neural network model can
be divided into several blocks. Each block may contain one or
multiple layers in the model. Based on this model architecture,
a popular SKD approach named Multi-exit SKD [3]–[6] is
to re-train the early layers (also known as shallow layers)
of the model under the guidance of counterpart’s outputs
or the model’s own final output, as shown in Fig. 1 (a).
For example, Be Your Own Teacher (BYOT) [3] adds an
Auxiliary Classifier (AC) to each block of the model. It uses
the knowledge extracted from the final output of the model
to train the ACs and update corresponding blocks. Multi-exit
SKD helps to ensure that all blocks in the model fully learn the
features of the training dataset. However, it introduces a high
computational overhead for training the additional ACs. For
instance, it takes over 5 hours to train BYOT on the CIFAR100
dataset using the ResNet-101 model, compared with about
3.48 hours for training the original model.

Existing SKD methods in the literature with less compu-
tational cost use regularization methods that leverage infor-
mation from history models (i.e., time-wise SKD (TW-SKD))
[7]–[13], as shown in Fig. 1 (b) and the predictions from the
same class of input data (i.e., intra-class SKD (IC-SKD)) [14],
[15] as shown in Fig. 1 (c). TW-SKD methods, such as self-
Distillation from the Last mini-Batch (DLB) [9], leverage the

https://orcid.org/0009-0001-0585-6778

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

idea that a “poor” teacher that has a low model accuracy may
provide useful knowledge compared to a well-trained teacher
[10] and use historical models as the “poor” teacher. However,
the output of the historical model can only provide limited
highly abstracted and inexplicable knowledge on account that
model at different training stages learns different levels of
features of the input data. IC-SKD aims to learn a more
generalized model output probability distribution for each class
of data by minimizing the distance between the model outputs
of different data that belong to the same class. However,
IC-SKD overlooks the similarity of inter-class model output
probability distributions, which can result in limited model
performance and overfitting.

In this paper, we aim to answer the following key question:
How to design SKD to capture more complete features of input
data with relatively low computation cost such that to promote
model performance?

We answer the above question by developing a novel infor-
mative teacher and learning a consistent shape of the model
outputs of all data regardless of their belonging classes. Note
that, the informative teacher does not mean that the teacher
has a high model accuracy. Specifically, preliminary experi-
ments suggest that different layers in a neural network can
extract different levels of features for the input data. Typically,
shallower layers can capture more shape and edge information
while deeper layers can learn more semantic information. This
motivates us to construct a teacher by utilizing the feature
extracted from the shallow layers to guide the training of the
whole model. Therefore, we propose Distillation with Reverse
Guidance (DRG). DRG employs an AC for a shallow layer
and uses the output of the AC to facilitate the student, i.e.,
the whole model, in learning the shape and edge information
from the shallow layer. Thus, the model can simultaneously
capture both structural and detailed features of input data,
leading to improved model performance. DRG overcomes the
high computation cost of BYOT and is able to extract more
informative information than TW-SKD.

Furthermore, to learn a consistent shape of the model
outputs for all data, we propose Distillation with Shape-wise
Regularization (DSR) that aims to explore the shape of inter-
class similarity. Different from vanilla KD, where the student
mimics the model output distribution of the teacher, and IC-
SKD, which focuses on intra-class similarity, DSR learns a
consistently ranked model output shape of all data. Our exper-
imental results show that DSR enlarges the decision boundary
among classes, contributing to increased model performance.

Our contribution can be summarized as follows:

• We design a lightweight SKD framework with multi-
source information fusion to improve model performance
at a low computation cost.

• We proposed the DRG method that constructs an infor-
mative teacher utilizing the output of a shallow layer to
facilitate the model simultaneously learning the structural
and detailed features of data.

• We propose the DSR method to stimulate the model
learning a consistent ranked output shape of all data
regardless of their belonging classes.

• We evaluate the performance of proposed DRG and DSR
methods and their combination over a variety of datasets
and models. Notably, our proposed methods outperform
the baseline methods by an average of 2% and the state-
of-the-art (SOTA) up to 1.15%.

• We analyze the rationality behind DRG and DSR through
experiments and show their superiority in capturing more
complete features of data than baselines and enlarging the
decision boundary.

The remainder of this paper is organized as follows. Section
II reviews the related works of KD and SKD. We present
preliminaries for the SKD problem in Section III and propose
our DRG and DSR methods in Section IV. Sections V and
VI demonstrate the experimental results and ablation study,
respectively. Section VII discusses the rationality behind DRG
and DSR. Finally, Section VIII concludes our paper.

II. RELATED WORK

Knowledge distillation. Vanilla KD employs a teacher-
student framework to facilitate the student learning from the
model output logits of the teacher [1] [16]. A unique parameter
in KD is the temperature in the softmax function over the
teacher’s model output logit, by tuning which, the student can
benefit more from the teacher with improved model perfor-
mance [17] [18]. An improved KD method is feature-based
distillation, where the student learns the teacher’s intermediate
feature [19] [20] [4]. Works in the literature also have focused
on the privacy issues of KD, such as data-free KD that
preserves an inaccessible training dataset of the teacher for
the student [21]–[23], private model compression [24], and
undistillable model that prevents a student from learning from
the model through KD [25]–[27].

Self-knowledge distillation. The first SKD work can date
back to Born Again Neural Networks (BAN) [2]. BAN em-
ploys a serial-distillation mechanism, namely asking teachers
to guide students with the same architecture which would
later be asked to guide other sub-students. The average of all
students’ outputs are considered as the final outputs. BYOT
et. al [3]–[5] developed a multi-exit architecture for a neural
network. The final output of the network is utilized to update
the shallow layers. However, BYOT exerts a high computation
cost due to the training of ACs for each exit of the model.

In addition, works in the literature also achieve SKD well
by designing a much more delicate regularization to improve
model performance. There are three categories of regulariza-
tion, i.e., TW-SKD, IC-SKD, and SKD with Label Smoothing.
TW-SKD uses the model in the history as the teacher to
regularize the current model. Specifically, Snapshot distilla-
tion (SS-KD) [7] randomly chooses a model from previous
iterations. Progressive refinement knowledge distillation (PS-
KD) [8] and DLB [9] regard the model in the last epoch as
poor-teacher. For IC-SKD, the class-wise SKD (CS-KD) [14]
uses two batched of data samples from the same class and
minimizes the output discrepancy between the two batches.
Data-Distortion Guided Self-Distillation (DDGSD) [15] exerts
different pre-processing techniques on the same batch and
minimizes their model output difference.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

Hard-Label Loss

Reverse-Guidance
Loss

Forward Flow

Block 1 Block 2 Block n

ada-block

fc layer

softm
ax

softm
ax

fc layer

outputs

outputs

label

iter

iter

logits
logits

label

softm
ax

outputs

ranked outputs

softm
ax

ranked outputs

softm
ax

Cross-Entropy Loss
Shape-wise

Regularization Loss
Forward Flow

rank

rank

Fig. 2: Illustrations of proposed methods. Left: DRG, where an AC is added to the output of a shallow layer to construct a “poor”
teacher to guide the whole model training. Right: DSR, where model outputs are ranked to form a inter-class regularization.

Another way to improve the performance of SKD is label-
smoothing. The essence of many label-smoothing works lies
in the utility of self-teaching, and they can be viewed as
special cases of SKD. Label-Smoothing Regularization (LSR)
[11] introduces a method where the ground truth distribution
is combined with a uniform distribution to create a virtual
teacher with random accuracy [10]. Delving Deep into Label
Smoothing (OLS) [28] proposes a more reasonable smoothing
technique that constructs labels based on the integrated output
information from previous epochs. Inspired by the widespread
Zipf’s law, Efficient one pass self-distillation with ZipF’s
Label Smoothing (ZF-LS) [29] seeks to discover the confor-
mality of ranked outputs and introduces a novel counterpart
discrepancy loss, minimizing with Zipf’s distribution based
on self-knowledge. Motivated by ZF-LS, it is promising to
achieve consistent model outputs of all data by using ranked
outputs from the last iteration as softened targets, which can
be seen as a specific form of label smoothing. For SKD
with label-smoothing, Teacher-free knowledge distillation (TF-
KD) [10], has discovered the entity of Label Smoothing
Regularization (LSR) [11] to generate high-accuracy virtual
teacher. Adversarial Learning and Implicit regularization for
self-Knowledge Distillation (AI-KD) [12] integrates TF-KD
and PS-KD and additionally employs a Generative Adversarial
Network (GAN) to align distributions between sup-student and
student.

Our work differs from the above work by designing a
lightweight SKD framework with multi-source information
fusion. We consider the more informative information from
shallow layers of the networks and explore a consistent shape
of model output for all classes of data.

III. PRELIMINARIES

In this section, we present the preliminaries including the
multi-class classification problem, KD, and SKD.

A. Multi-class Classification

Considering a supervised classification task on a training
dataset D, each data sample in the dataset is represented
by {x, y} ∈ D, where x indicates the input and y is the
corresponding label. We assume there are total K classes such

that y ∈ {1, . . . ,K}. We train a neural network model h(θ,x)
parameterized by θ to minimize the loss of a data sample on
the model. A typical loss function for classification is cross-
entropy loss. Denote z := h (θ,x) as the output logit of
the model. Applying the softmax function (with temperature
τ = 1) to the model output, we can obtain the probability
distribution p for the input data x:

p (z|x) = softmax (z, τ) =
exp (z/τ)∑K

k=1 exp(zk/τ)
, (1)

where zk indicate the kth element in z. When it is clear from
the context, we use p for short of p (z|x). The cross-entropy
loss function is

LCE(p (z|x) , y) =
1

K

K∑
k=1

yk log pk, (2)

where pk indicates the k th element of p. The objective is to
minimize the expected risk of the model on the whole dataset:

min
θ

E{x,y}∈DLCE(p (z|x) , y). (3)

B. Knowledge Distillation

In KD, there exists another teacher model to guide the
training of the target model, i.e., the student. A high temper-
ature τ > 1 is applied to soften the model output probability
distribution to facilitate transferring more knowledge from
the teacher to the student [1]. Denote the output probability
distribution of the teacher with temperature τ for an input
x by q (z′|x), where z′ is the output logit of the teacher.
The Kullback-Liebler (KL) divergence is employed to measure
the difference between the teacher and student’s model output
probability distributions (z′ and z):

LKL (q (z
′|x) , p (z|x)) = 1

K

K∑
k=1

qk log
qk
pk

. (4)

Finally, the overall loss function for vanilla KD is:

LKD (p, y, q) =LCE(p (z|x) , y)
+ τ2 · LKL (q (z

′|x) , p (z|x))
(5)

The coefficient τ2 balances the cross-entropy and KL diver-
gence losses when the temperature τ changes [1].

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

C. Self-Knowledge Distillation
Self-knowledge distillation applies KD to improve model

performance by utilizing the prior knowledge extracted from
the model itself, which is different from the vanilla KD with
a separate teacher model. To train the model h (θ,x), we first
extract some information I (θ,x) from the model. I (θ,x)
may change with time, layers, and input data, but is not related
to any other model. SKD executes a self-knowledge transfer
(ST) loss to minimize the discrepancy between the model and
the extracted information:

LST (h (θ,x) , I (θ,w)) := ρ (h (θ,w) , I (θ,x)) , (6)

where ρ is a metric function, which varies for different SKD
methods. For example, ρ corresponds to a l2-norm in BYOT,
the KL Divergence in PS-KD, and the adversarial loss in AI-
KD, etc. The ST loss function may take effect at different
parts of the model h (θ,w). For example, the ST loss function
updates the shallow layers of the model in BYOT and updates
the whole model in TW-SKD and IC-SKD. Overall, the SKD
loss function combines the original loss function using the
hard labels and the ST loss function:

LSKD = LCE(p (z|x) , y) + ζ · LST (h (θ,x) , I (θ,x)) (7)

where ζ measures the importance of ST loss, which may vary
for different SKD methods.

IV. PROPOSED METHODS

In this section, we propose our DRG and DSR methods to
achieve multi-source information fusion for SKD performance
improvement.

A. Distillation with Reverse Guidance (DRG)
Motivation: Different layers in a neural network grab dif-

ferent features of the input data. Typically, shallower layers can
capture more shape and edge information while deeper layers
can learn more detailed semantic information. The shape and
edge feature of the input data vanishes gradually as the layers
become deepen, resulting in ignorance of edge information in
the final model output and severe model overfitting. By adding
an AC to a shallow layer, we can construct a teacher model
for the original model. The output of the AC is usually more
underfitting than the whole model as it has a smaller model
architecture. Related works have revealed the effectiveness of
a “poor” teacher for KD [10]. However, they have neglected
the potential of shallow layers for guiding the training of the
whole model. Thus, we propose to use the shallow layer to
reversely guide the training of the whole model to achieve
information fusion of both edge and detailed features of date.

DRG design: The framework of DRG is demonstrated
on the left-hand side of Fig. 2. We consider neural networks
with sequential layers/blocks, such as ResNet [30]. DRG
introduces an add-on structure, i.e., AC, to the output of
a shallow layer/block 1, constructing a “poor” teacher. Let

1Note that we just additionally train one AC in DRG, as compared to
one AC for each block in BYOT. In this sense, our DRG is a lightweight
framework. We will discuss the selection of the position of shallow layers in
Section V and show that one AC is enough for DRG to achieve a remarkable
SKD performance.

Algorithm 1 Distillation with Reverse Guidance (DRG).
Input: D, γ, τ, α, T

1: Initialize θ ← θ0, w ← w0;
2: for t ∈ {0, . . . , T − 1} do
3: Randomly sample Bt from D;
4: z ← h(θt, Bt);
5: Compute loss LHL using (8);
6: z′ ← g

(
θ̂t,wt, Bt

)
;

7: Compute discrepancy LRG using (9);
8: Compute loss LDRG using (10);
9: θt+1 ←− θt − γ · ∇LDRG;

10: wt+1 ←− wt − γ · ∇LDRG;
11: end for

w be the parameter of the AC. The teacher model can be
represented by g

(
θ̂,w,x

)
, where θ̂ ⊂ θ is the parameter

of the easier layers of the whole model before the layer
connected to the AC. Denote the output logit and correspond
output probability distribution of g

(
θ̂,w,x

)
taking x as

input by z′ := g
(
θ̂,w,x

)
and q (z′|x) := softmax (z′, τ),

respectively. We use the cross-entropy loss function to train
the “poor” teacher model and the whole model simultaneously
using the following hard-label loss.

LHL = LCE(q(z
′|x), y) + LCE(p(z|x), y). (8)

To achieve reverse guidance, the “poor” teacher guides the
whole model training by minimizing the KL divergence:

LRG = τ2 · LKL(q(z
′|x), p(z|x)) (9)

Overall, the whole loss function of DGR is

LDRG = LHL + α · LRG, (10)

where α is a coefficient between two losses.
Algorithm 1 demonstrates the model training process of

DRG, where γ denotes the learning rate and T indicates the
total number of training iterations. θt and wt represent the
model parameters at iteration t. In each iteration t, a mini-
batch of data Bt ⊂ D is randomly sampled to train the model.
The mini-batch is simultaneously fed into the model (line 4)
and the teacher, which is constructed by shallow layers of the
model and the AC, (line 6). Based on the output of the original
model and the teacher, we calculate the DRG loss, i.e., LDRG

(line 8) and update the model and auxiliary parameters (line
9 - 10) according to SGD.

B. Distillation with Shape-wise Regularization (DSR)

Motivation: Existing works have investigated the intra-
class similarity of input data, such as CS-KD and DDGSD.
However, to the best of our knowledge, no work has stressed
the consistent property of model output among different
classes, i.e., inter-class similarity. To illustrate the necessity
of exploring a consistent model output property of different
classes of data, we evaluate the variance of ranked model
outputs, as demonstrated on the left-hand side of Fig. 3.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Res18,C100

Res50,C100

Res101,C100

Res18,Tin

Va
ria

nc
e

Pearson's coefficient
 0 50 100

-0.64

-0.65

-0.74

-0.33

Training Process %

Fig. 3: The variance of ranked outputs in one epoch along the
training process (left) and Pearson’s coefficient of variance
and accuracy (right) for different datasets trained with various
models. ResNet, CIFAR100, TinyImageNet are abbreviated as
“Res”, “C100”, and “Tin” respectively.

Ranking outputs [29] according to class probability would
eliminate the class inharmony and gives more concentration
on the overall interaction between classes. We train CIFAR100
and TinyImageNet datasets using various models till converge
and normalize the training time to the training process. The
variance is calculated by taking an average of the variances of
each element in the model outputs over all test data samples.
We can observe that the variance of ranked model output
decreases along with the training process, which corresponds
to increasing model accuracy. On the right-hand side of Fig. 3,
we calculate the Pearson coefficients between model accuracy
and the variance of ranked model output for different datasets
trained with various models. All results exert a strong negative
relation between model accuracy and ranked output variance.
This implies that along with model training, the model outputs
from various classes have a consistent tendency after being
ranked. The phenomenon motivates us to regularize the ranked
model output shape of different input data to improve the
performance of SKD.

DSR design: The framework of DRG is demonstrated
on the right-hand side of Fig. 2. In each iteration t, we
rank the elements in the model output according to the non-
decreasing order and obtain z̃t = {z̃t1, z̃t1, · · · z̃tK}, such that
z̃t1 ≤ z̃t1 ≤ . . . ≤ z̃tK . DSR achieves the consistency of
ranked model output between different input date leveraging
the ranked model output of the last iteration, i.e., z̃t−1. We use
KL divergence to regularize the model using z̃t−1, defined as
the Lt

SR:

Lt
SR = τ2 · LKL(p(z̃

t−1|x), p(z̃t|x)). (11)

Overall, DSR combines the vanilla classification loss and Lt
SR

for SKD model training:

LDSR = LCE(p(z|x), y) + β · Lt
SR, (12)

where β measures the importance of Lt
SR compared to the

original classification loss.
Algorithm 2 shows the training process of DSR. Specifically

in each iteration t, data batch Bt is randomly sampled to train
the model. Outputs of the model, i.e., z, are then ranked in
ascending order to obtain z̃(line 5). The DSR loss is computed

Algorithm 2 Distillation with Shape-wise Regularization.
Input: D, γ, τ, β, T

1: Initialize θ ← θ0, z̃−1 ← 0;
2: for t ∈ {0, . . . , T − 1} do
3: Randomly sample Bt from D;
4: z ← h(θt, Bt);
5: Rank z in ascending order to obtain z̃;
6: Compute loss Lt

DSR using (12);
7: θt+1 ←− θt − γ · ∇LDSR;
8: Store z̃ for the next iteration;
9: end for

using the ranked model output in the last iteration, i.e., z̃t−1,
(line 6). After updating the model parameters with SGD (line
7), z̃t will be recorded (line 8) and used in the next iteration.

We can combine our DRG and DSR methods for SKD using
the following overall loss function:

L = LHL + α · LRG + β · Lt
SR. (13)

V. EXPERIMENTS

We conduct experiments for our proposed method over
various datasets and models. First, we introduce settings
including datasets, models, baselines, etc. Then, we analyze
the experimental results for different datasets.

A. Settings

Datasets. We employ five datasets for classification tasks,
i.e., CIFAR100, TinyImageNet, Caltech101, Stanford Dogs
and CUB200.

• CIFAR100: CIFAR100 [31] is a classical 100-class clas-
sification dataset. It contains 50,000 images for training
and 10,000 for test. The image size is 32x32 pixels.

• TinyImageNet: TinyImageNet is a subset of ImageNet
[32], with 100, 000 train data samples and 10,000 test
samples. There are 200 classes in total. The size of an
image is 32x32 pixels.

• Caltech101: Caltech101 is a large tough-grained dataset
for classification and object detection. There are 101 main
classes and 1 background class in total.

• Stanford Dogs / CUB200: Stanford Dogs and CUB200
are large fine-grained datasets that consist of 120 dog
classes and 200 bird classes, respectively.

In all experiments, training samples are processed with Ran-
domCrop (32x32 for CIFAR100,TinyImageNet; 224x224 for
others) and RandomHorizontalFlip to ensure that all images
have a consistent size and to add randomness to the training
process.

Models. We employ five classical neural network mod-
els for the above datasets including ResNet18, ResNet50,
ResNet101 [30], ResNeXt50 32x4d [33], and DenseNet121
[34]. The ResNet series is well-known for its innovative
shortcut connections, which help to reduce overfitting. In
contrast, the DenseNet architecture was the first to introduce
fully-connected blocks as a means of improving feature reuse
and facilitating information flow between layers.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

TABLE I: Top-1 test accuracy on CIFAR100. Values marked in Red, Blue are the best and the second best accuracy respectively.

METHODS RESNET18 RESNET50 RESNET101 RESNEXT50 32X4D DENSENET-121
VANILLA 77.29% 77.07% 78.52% 78.87% 78.70%
BYOT 78.25% 79.63% 80.71% 80.18% 79.63%
CS-KD 78.55% 76.91% 77.43% 79.69% 78.92%
PS-KD 78.67% 79.02% 79.41% 80.38% 79.52%
DLB 79.52% 79.88% 80.02% 80.52% 79.64%
ZF-LSlb 77.49% 77.38% 77.27% 79.42% 78.87%
TF-KDreg 78.33% 78.30% 79.19% 79.27% 79.38%
DRG (OURS) 79.07% (+1.78%) 79.87% (+2.80%) 80.86% (+2.34%) 81.01% (+2.14%) 79.99% (+1.29%)
DSR (OURS) 78.15% (+0.88%) 79.12% (+2.05%) 79.78% (+1.26%) 79.01% (+0.14%) 79.08% (+0.38%)
DRG+DSR (OURS) 79.30% (+2.01%) 79.94% (+2.87%) 80.72% (+2.20%) 80.91% (+2.04%) 79.76% (+1.26%)

TABLE II: Top-1 test accuracy on TinyImageNet. Values marked in Red, Blue are the best and the second best accuracy
respectively.

METHODS RESNET18 RESNET50 RESNEXT50 32X4D

VANILLA 56.69% 58.07% 59.55%
BYOT 57.69% 60.59% 60.07%
PS-KD 57.05% 60.70% 60.87%
DLB 57.09% 59.89% 60.65%
DRG (OURS) 57.57% (+0.88%) 60.41% (+2.34%) 60.94% (+1.39%)
DSR (OURS) 56.75% (+0.06%) 58.34% (+0.27%) 60.34% (+0.79%)
DRG+DSR (OURS) 58.08% (+1.39%) 61.04% (+2.97%) 61.14% (+1.59%)

Environment and hardwares: Our implementations are
based on PyTorch, with Python version 3.8.5, Torch version
1.13.0, and Torchvision version 0.14.0. All experiments were
conducted using an NVIDIA RTX 3090 with 24GB memory.

Hyperparameters. We fixed the number of epochs to
200 and set the temperature τ using a grid search. We set
hyperparameters α and β to 0.2 and 1, respectively, and
employ a manual learning rate adjustment mechanism for our
experiments. For CIFAR100, the initial learning rate was set
to 0.1 and decreased to 0.2 of its previous value at 60, 120,
and 160 epochs. For TinyImageNet, Stanford Dogs, CUB200,
and Caltech101, the initial learning rate was set to 0.1 and
decreased to 0.1 of its previous value at 100 and 150 epochs.
We use a batch size of 128 for CIFAR100 and TinyImageNet,
and 64 for the other datasets. The optimizer used was SGD
with a momentum of 0.9 and weight decay of 5e-4. For DRG,
we add an AC after the second block of the model to construct
the “poor” teacher.

Baselines. We combine our proposed method with the
following methods:

• Vanilla: training the original model without SKD;
• BYOT [3]: adding an Auxiliary Classifier (AC) to each

block of the model;
• CS-KD [14]: an IC-SKD method that uses two batched

of data samples from the same class and minimizes the
output discrepancy between the two batches;

• PS-KD [8]: a TW-SKD method that employs the model
in the last epoch as a teacher;

• DLB [9]: a TW-SKD method that regards the model in the
last iteration as a teacher, meanwhile employing different
augmentation techniques for the same data batch. It
differs from PS-KD in the supervision granularity and

data preprocessing.
• ZF-LSlb [29]: a label smoothing method that minimizes

the cross entropy between the ranked model outputs and
zipf’s distribution;

• TF-KDreg [10]: an SKD based on ameliorating LSR.

Time-cost s/iter

Space-cost
 MB

0.064

0.16

0.25

0.073

0.19

8828
4070

106164298 10100 13686

Res18,BYOT

Res50,BYOT

Res18,DLB

Res50,DLB

Res101,BYOT

Res101,DLB

0.30

3794

0.13

9174
7358

Res101,ours

Res18,ours

Res50,ours

0.045

Fig. 4: Time and space cost of different methods trained with
various models on CIFAR100. ResNet is abbreviated as “Res”.
Blue, Green and Red points represent experiments of BYOT,
DLB and our methods respectively.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

Class: Mallard

Class: Dingo

Vanilla DRG DSR DRG+DSR

0.250

0.250

0.200.150.100.05

0.250 0.200.150.100.05 0.250 0.200.150.100.05

0.250 0.200.150.100.05

0.250 0.200.150.100.05

0.250 0.200.150.100.05

0 0.200.150.100.05 0.25

0 0.200.150.100.05 0.25

Fig. 5: Example experimental results on Stanford Dogs (top) and CUB200 (bottom). All bar figures show the ranked predictive
probability of the top 30 classes, with ground-truth (GT) classes marked in Green. The baseline results for vanilla single model
training are shown in the second column, while the other columns display results from DRG and DSR, and their combination.
In the face of complex tasks, our results show lower probabilities for the GT class and higher probabilities for other classes.
This suggests that our methods extract more integrated information and are less overconfident and overfitting, resulting in a
more careful and delicate decision-making process.

B. Experimental results

1) Results on CIFAR100 and TinyImageNet: Our results
are presented in Table I (for CIFAR100) and Table II (for
TinyImageNet).

Compared with baseline algorithms, we have the following
observations:

• Compared with vanilla single model training: our
methods consistently outperform the vanilla single model
training in top-1 accuracy, with a significant improvement
ranging from 1.26% to 2.87%.

• Compared with BYOT, CS-KD, PS-KD, ZF-LS, and
TF-KD: Our methods generally achieve higher accuracy
than these methods, with an average accuracy boost of
1.08%. Particularly for CIFAR100 over ResNet18 model,
our methods exceed their maximum accuracy by 0.97%.

• Compared with DLB: To the best of our knowledge,
DLB is the current claimed SOTA. Our results show that
our methods perform better than DLB. Especially, our
methods surpass DLB on large-scale networks, such as
the ResNet100 for CIFAR100. This is because DLB uses
the same images with different transformations, which
may lead to overfitting and diluting the regularization ef-
fects in larger networks. Our methods avoid this problem.

Notably, the combination of our methods, i.e., DRG+DSR,
is particularly effective and has achieved SOTA performance.
Although DSR may not individually achieve SOTA, it has
contributed significantly to the success of the combination
(+0.51% on ResNet18, TinyImageNet; +0.63% on ResNet18
and TinyImageNet), surpassing its individual accuracy boost.

Time and space costs. The time and space costs of different
methods on CIFAR100 dataset with various models are shown
in Fig. 4, where the time cost is evaluated by the consuming
time of each iteration and the space cost is the storage space
of the models. We can observe that BYOT takes about 0.064s
per iteration on ResNet18 and spends much more when the

model gets larger. Although DLB is faster than BYOT on small
models, it incurs a vast time cost on ResNet101, which may
result from re-sampling the training dataset to construct mini-
batches and frequently recording the images and outputs of the
last iteration. Remarkably, our combined method DRG+DSR
receives the least time and space cost. Specifically, the time
cost of our DRG+DSR is about only 70 percent of that of
others; the Space-cost of our DRG+DSR is also extraordinarily
smaller than others (×0.67 ∼ ×0.83). Most importantly, we
can achieve better performance than BYOT and DLB.

Robustness. Our proposed methods are more robust over
different neural network models than baselines. Specifically
for CIFAR100, we achieve the best results among all meth-
ods, especially for large-scale models such as ResNet100,
ResNeXt50 32×4d, and DenseNet-121, indicating the robust-
ness of our methods across different models.

2) Results on large-scale fine-grained datasets: We extend
our experiments to include the large fine-grained datasets
of Stanford Dogs and CUB200. Figure 5 shows the ranked
model output probability of the top 30 classes for two data
examples. The Green bars mark the ground-truth label. Our
results indicate that vanilla training of a single model may
give a wrong prediction as the predicted label with the
highest probability is not consistent with the true label. In
comparison, our methods generate model output probability
with low variance, exerting higher probabilities for several
classes outside the true label. This means our models could
select a range of candidate classes and make decisions more
carefully and delicately, rather than making an exact decision
that neglects the relationships between different classes.

3) Compatibility Analysis: To validate the effectiveness and
compatibility of our methods over the existing methods, we
plug DSR and DRG into Cutout [35] and PS-KD. Cutout is a
popular data augmentation technique, which employs a mask
to randomly eliminate part of the input image data. We set the
number of masks and mask size to 1 and 16px respectively,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

TABLE III: Results of different combinations of our methods
and existing methods for CIFAR100 over ResNet18.

METHODS ACCURACY

CUTOUT 77.39%
CUTOUT+DRG 80.12%(+2.73%)
CUTOUT+DSR 78.21%(+0.82%)
CUTOUT+DRG+DSR 79.81%(+2.42%)
PS-KD 78.67%
PS-KD+DRG 79.18%(+0.51%)
PS-KD+DSR 79.38%(+0.71%)
PS-KD+DRG+DSR 79.06%(+0.39%)

TABLE IV: Accuracy and time-cost of different block subsets
in DRG for CIFAR100 over ResNet18.

B #1 B #2 B #3 ACCURACY % TIME-COST (S/ITER).
✔ 78.93%(×0.9953) 0.044(×0.99)

✔ 79.30% 0.045
✔ 76.96%(×0.9705) 0.046(X1.01)

✔ ✔ 79.42%(×1.0015) 0.052(×1.17)
✔ ✔ 78.54%(×0.990) 0.054(×1.21)

✔ ✔ 79.32%(×1.0002) 0.055(×1.22)

which is consistent with [9].
Table III presents the performance of these methods before

and after the integration of DRG, DSR, and their combination.
The results demonstrate that the addition of DRG, DSR,
or their combination significantly improves the accuracy of
Cutout by 0.82% to 2.42%. Similarly, the integration of these
methods with PS-KD results in an accuracy boost of 0.39%
to 0.71% compared to vanilla PS-KD.

VI. ABLATION STUDY

In this section, we conduct an ablation study of our proposed
methods. We first explore the number of teachers and the
position of selected blocks in DRG. Then we evaluate the
effect of different hyperparameters including temperature and
the coefficients in objective loss functions.

A. AC number and block position in DRG

For DRG, we can choose one or a subset of blocks in the
neural network model to add ACs to selected blocks in order
to accelerate the model learning process while maintaining
accuracy. Table IV displays the accuracy and time cost results
of CIFAR100, over the ResNet18 model for different sets of
selected blocks.

We have the following observation:
• When adding AC to a single block in the deeper layer

of the model, such as the third block (B #3) compared
to the first and second blocks, DRG experiences a sharp
decrease in test accuracy. That is because the outputs of
deeper layers have a higher level of similarity with the
final output, contributing less to the formulation fusion
and possibly leading to overfitting.

• Selecting two blocks to add ACs show subtle accuracy
improvement with a significantly increased time cost.

Temperature

A
cc

ur
ac

y
%

Fig. 6: Performance of DRG and DSR under varying temper-
ature.

A
cc

ur
ac

y
%

Coefficient Coefficient

A
cc

ur
ac

y
%

Fig. 7: Accuracy under varying α and β.

Therefore, only constructing one “poor” teacher is enough
for our DRG, resulting in a lightweight SKD design.

B. Hyperparameters

Temperature τ : We evaluate the performance of DRG and
DSR under varying temperature on CIFAR100, ResNet18, as
shown in Fig. 6. The results indicate that DRG and DSR
achieve the highest accuracy when the temperature are set to
1 and 4, respectively.

Coefficients α and β: We evaluate the performance of DRG
and DSR for different coefficients α and β in (10) and (12) on
CIFAR100, ResNet18. We vary α and β from 0.01 to 1 and
from 0.1 to 3, respectively. The results in Fig. 7 show that the
best accuracy is achieved when α and β are set to 0.2 and 1,
respectively. This suggests that a moderate level of usage of
both DRG and DSR provides optimal performance for SKD.

VII. DISCUSSION

In this section, we discuss the rationality behind our
proposed methods through experiments. First, we show the
capacity of DRG in information fusion. Then, we analyze the
double-effect of DSR in enlarging decision boundary and label
smoothing.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

Output of AC after shallow layerInput Image: Grand_piano Output of DRG (ours)Output of final classifier

Input Image: Panda Output of AC after shallow layer Output of final classifier Output of DRG (ours)

Fig. 8: GradCAM heatmaps of different methods on Caltech101 over ResNet18. From left to right: input images, output of AC
after shallow layer, output of model by BYOT, and the output of DSR (ours). As the heatmaps exemplify, instead of excessive
care of one single feature, DRG merges the feature of both classifiers after the shallow layer and the whole model.

Vanilla DSRDRG
Fig. 9: FIT-SNE results of different methods for randomly chosen 50 classes on CIFAR100, ResNet18. DSR exerts a more
clear decision boundary among classes than the vanilla single model training and DRG.

A. Informulation Fusion of DRG

DRG achieves the information fusion of features extracted
from different parts of a neural network model. To illustrate
this, we employ GradCAM [36] to virtualize the features char-
acterized by different parts of the model and our DRG method.
GradCAM is a method for generating attention heatmaps to
visualize the focusing position of a model for the input data.
We present the GradCAM results of the output of AC after
the shallow layer (i.e., the second block of ResNet18 in our
experiments), the output of the whole model, and out DRG
method in Fig. 8.

The results show that the classifier after the shallow layer
mainly focuses on the edge and shape features of the input
date, such as the legs of the table and the outline of the panda.
In contrast, the whole model with more layers forgets edge
features and extracts more determined information, such as
the ears of the panda. By using the classifier after the shallow
layer as the “poor” teacher of KD, DRG can capture both edge
and detailed information of the input data, providing valuable
insights into the information fusion of our DRG method.

B. Double-effect of DSR

We can interpret the rationality behind DSR from the
following two perspectives.

First, DSR is capable of achieving the consensus of ranked
model output probability, which enlarges the decision bound-
ary among different classes. Fig. 9 demonstrates the virtual-
ized decision boundary of DRG and DSR over (CIFAR100,
ResNet18) using FIT-SNE [37] results 2. We randomly sample
50 classes to clearly show the FIT-SNE virtualization. We can
observe that our DSR method exerts a more clear decision
boundary than vanilla single model training and DRG.

Moreover, DSR is equivalent to a label-smoothing method
that progressively designs a label from a distribution rather
than a predetermined shape. Specifically, the “soft” label used
in DSR is the ranked label of another data sample, which is
randomly sampled from the dataset. This contributes to a better
generalization of DSR.

2We use the official implementation of FIT-SNE as https://github.com/
KlugerLab/FIt-SNE

https://github.com/KlugerLab/FIt-SNE
https://github.com/KlugerLab/FIt-SNE

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

VIII. CONCLUSION

In this paper, we propose a lightweight SKD framework
with two methods, DRG and DSR, to promote multi-source
information fusion and improve the performance of SKD. We
construct only one auxiliary teacher in DRG and highlight
the inter-class model output shape in DSR to achieve better
test accuracy with a low time cost. Experimental results over
enormous datasets and models show that DRG and DSR, and
their combination, outperform the baselines with lower or
competitive time costs and better robustness. In summary, our
proposed methods demonstrate significant improvements in
self-knowledge distillation through novel approaches to multi-
source information fusion.

REFERENCES

[1] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[2] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and A. Anandkumar,
“Born again neural networks,” in International Conference on Machine
Learning. PMLR, 2018, pp. 1607–1616.

[3] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your
own teacher: Improve the performance of convolutional neural networks
via self distillation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 3713–3722.

[4] M. Ji, S. Shin, S. Hwang, G. Park, and I.-C. Moon, “Refine myself
by teaching myself: Feature refinement via self-knowledge distillation,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 10 664–10 673.

[5] S. Li, M. Lin, Y. Wang, Y. Wu, Y. Tian, L. Shao, and R. Ji, “Distilling
a powerful student model via online knowledge distillation,” IEEE
Transactions on Neural Networks and Learning Systems, 2022.

[6] M. Phuong and C. H. Lampert, “Distillation-based training for multi-exit
architectures,” in Proceedings of the IEEE/CVF international conference
on computer vision, 2019, pp. 1355–1364.

[7] C. Yang, L. Xie, C. Su, and A. L. Yuille, “Snapshot distillation: Teacher-
student optimization in one generation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
2859–2868.

[8] K. Kim, B. Ji, D. Yoon, and S. Hwang, “Self-knowledge distillation
with progressive refinement of targets,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 6567–6576.

[9] Y. Shen, L. Xu, Y. Yang, Y. Li, and Y. Guo, “Self-distillation from the
last mini-batch for consistency regularization,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 11 943–11 952.

[10] L. Yuan, F. E. Tay, G. Li, T. Wang, and J. Feng, “Revisiting knowledge
distillation via label smoothing regularization,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 3903–3911.

[11] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[12] H. Kim, S. Suh, S. Baek, D. Kim, D. Jeong, H. Cho, and J. Kim, “Ai-
kd: Adversarial learning and implicit regularization for self-knowledge
distillation,” arXiv preprint arXiv:2211.10938, 2022.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[14] S. Yun, J. Park, K. Lee, and J. Shin, “Regularizing class-wise predictions
via self-knowledge distillation,” in Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 2020, pp. 13 876–
13 885.

[15] T.-B. Xu and C.-L. Liu, “Data-distortion guided self-distillation for deep
neural networks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 5565–5572.

[16] J. Kim, S. Park, and N. Kwak, “Paraphrasing complex network: Net-
work compression via factor transfer,” Advances in neural information
processing systems, vol. 31, 2018.

[17] Z. Li, X. Li, L. Yang, B. Zhao, R. Song, L. Luo, J. Li, and J. Yang,
“Curriculum temperature for knowledge distillation,” arXiv preprint
arXiv:2211.16231, 2022.

[18] X.-C. Li, W.-S. Fan, S. Song, Y. Li, B. Li, Y. Shao, and D.-C. Zhan,
“Asymmetric temperature scaling makes larger networks teach well
again,” arXiv preprint arXiv:2210.04427, 2022.

[19] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Ben-
gio, “Fitnets: Hints for thin deep nets,” arXiv preprint arXiv:1412.6550,
2014.

[20] B. Heo, J. Kim, S. Yun, H. Park, N. Kwak, and J. Y. Choi, “A
comprehensive overhaul of feature distillation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
1921–1930.

[21] H. Chen, Y. Wang, C. Xu, Z. Yang, C. Liu, B. Shi, C. Xu, C. Xu, and
Q. Tian, “Data-free learning of student networks,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp.
3514–3522.

[22] K. Binici, S. Aggarwal, N. T. Pham, K. Leman, and T. Mitra, “Robust
and resource-efficient data-free knowledge distillation by generative
pseudo replay,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 6, 2022, pp. 6089–6096.

[23] B. Zhao, Q. Cui, R. Song, Y. Qiu, and J. Liang, “Decoupled knowledge
distillation,” in Proceedings of the IEEE/CVF Conference on computer
vision and pattern recognition, 2022, pp. 11 953–11 962.

[24] J. Wang, W. Bao, L. Sun, X. Zhu, B. Cao, and S. Y. Philip, “Private
model compression via knowledge distillation,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.
1190–1197.

[25] H. Ma, T. Chen, T.-K. Hu, C. You, X. Xie, and Z. Wang, “Undistillable:
Making a nasty teacher that cannot teach students,” arXiv preprint
arXiv:2105.07381, 2021.

[26] S. Kundu, Q. Sun, Y. Fu, M. Pedram, and P. Beerel, “Analyzing
the confidentiality of undistillable teachers in knowledge distillation,”
Advances in Neural Information Processing Systems, vol. 34, pp. 9181–
9192, 2021.

[27] S. Jandial, Y. Khasbage, A. Pal, V. N. Balasubramanian, and B. Krish-
namurthy, “Distilling the undistillable: Learning from a nasty teacher,”
in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XIII. Springer, 2022,
pp. 587–603.

[28] C.-B. Zhang, P.-T. Jiang, Q. Hou, Y. Wei, Q. Han, Z. Li, and M.-
M. Cheng, “Delving deep into label smoothing,” IEEE Transactions on
Image Processing, vol. 30, pp. 5984–5996, 2021.

[29] J. Liang, L. Li, Z. Bing, B. Zhao, Y. Tang, B. Lin, and H. Fan, “Efficient
one pass self-distillation with zipf’s label smoothing,” in Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XI. Springer, 2022, pp. 104–119.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[31] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[32] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[33] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[35] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[36] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[37] G. C. Linderman, M. Rachh, J. G. Hoskins, S. Steinerberger, and
Y. Kluger, “Fast interpolation-based t-sne for improved visualization of
single-cell rna-seq data,” Nature methods, vol. 16, no. 3, pp. 243–245,
2019.

